The impact of chemotherapy on the host microbiota in the context of oral and gastrointestinal mucositis

E. Vanlancker, ir, PhD¹, B. Vanhoecke, PhD¹, B. De Moerloose, MD, PhD², T. Van de Wiele, ir, PhD¹

SUMMARY
In this PhD thesis, we investigated the impact of chemotherapy on the microbiota in the context of mucositis by using different experimental set-ups. Using bacterial monocultures, we showed that exposure to 5-fluorouracil at physiologically relevant concentrations differentially impacts oral microorganisms. Despite this difference in microbial sensitivity to 5-fluorouracil in pure cultures, we showed that the impact of 5-fluorouracil, as well as irinotecan, towards highly diverse gastrointestinal microbial populations is only marginal. These findings were generated with two different model systems that exclude host cells and this led us to conclude that the host is crucial in the establishment of chemotherapy-induced shifts in microbial composition and functionality. The next step in our research entailed the use of an in vitro wound healing model, where we demonstrated that the presence of microbiota negatively impacts the wound healing capacity of damaged oral epithelial cells. This indicates that microbial presence can delay the recovery from mucositis. Yet, we also found that microbial composition, which is for instance disturbed in patients receiving cancer therapy, is an additional determinant of aggravated wound healing. We further substantiated this conclusion with an in vivo longitudinal monitoring study of paediatric patients treated for haematological malignancies. While shifts in the oral microbial community during and following chemotherapy were mostly patient-specific, clear associations were made with the use of systemic antibiotics and antibacterial mouth rinses, which create microbial dysbiosis. In view of these findings we propose that the preventive use of antimicrobials needs careful consideration given the profound impact on the microbiome and subsequent consequence for the host.

Introduction
Oral and gastrointestinal mucositis significantly impact the quality of life of cancer patients. Mucositis may lead to a reduction or delay of cancer treatment and unfortunately good treatment options are elusive.¹ A mounting body of evidence suggests a key role for the microbiota in mucositis development.²⁻⁵ However, the underlying mechanisms remain unclear. Microbial shifts have been observed following chemotherapy in both clinical and animal studies.⁶⁻⁹ However, it is not clear whether chemotherapy directly induces microbial shifts or if chemotherapy causes a disturbed host environment inducing microbial changes. In the in vitro experiments in this thesis, we focused on two commonly used chemotherapeutic agents with high incidence of mucositis: 5-fluorouracil (5-FU) and irinotecan (SN-38).

5-FU SENSITIVITY VARIES AMONG ORAL MICRO-ORGANISMS
Firstly, the direct effect of physiologically relevant concentrations of 5-FU on the viability and growth of oral bacterial monocultures was investigated.¹⁰ 5-FU sensitivity varied among the tested oral species. Klebsiella oxytoca, Streptococcus salivarius, Streptococcus mitis, Streptococcus oralis, Pseudomonas aeruginosa and Lactobacillus salivarius appeared to be highly resistant to all tested concentrations (0.1-50 µM). In contrast, Lactobacillus oris, Lactobacillus plantarum, Streptococcus pyo-
genes, *Fusobacterium nucleatum* and *Neisseria mucosa* showed a significant reduction in growth and viability starting from very low concentrations (0.2–3.1 µM). We also provided evidence that dihydropyrimidine dehydrogenase, an enzyme involved in 5-FU resistance in humans, is not involved in the 5-FU resistance of the selected species.

5-FU AND IRINOTECAN HAVE LIMITED IMPACT ON THE COLON MICROBIOME

To assess the direct impact of chemotherapeutic agents on a complex microbial ecosystem, we used the M-SHIME®, an *in vitro* mucosal simulator of the human intestinal microbial ecosystem. The direct impact of 5-FU and SN-38 on the luminal and mucosal gut microbiota from several human donors was investigated. At a dose of 10 µM, 5-FU impacted the functionality and composition of the colon microbiota to a minor extent. Similarly, a daily dose of 10 µM SN-38 did not cause significant changes in the functionality or microbiome composition. As our mucosal model does not include a host compartment, we therefore assume that the changed microbiome observed *in vivo* is primarily induced by an altered host environment upon chemotherapeutic treatment.

REFERENCES

KEY MESSAGES FOR CLINICAL PRACTICE

1. Although the direct impact of chemotherapy on the oral and gastrointestinal microbiota is limited, chemotherapy will have an indirect impact on the microbiome via the chemotherapy-disturbed host environment.

2. Oral hygiene is very important to improve wound healing. Yet, for patients suffering from mucositis, extra measures besides good oral hygiene may be needed.

3. (Prophylactic) antibiotics should be used very carefully as they also highly impact the oral microbiome.

4. Antibacterial mouth rinses shift the oral microbiome and are therefore not recommended for prevention or treatment of oral mucositis.

5. Long-term follow-up of oral hygiene is important following oral mucositis as there is only partial recovery of the oral microbiome in the first months.

Call for Hematothesis

Share your thesis with your colleagues!

At the Belgian Journal of Hematology (BJH) we are constantly looking for interesting doctoral theses in haematology. The BJH is an ideal platform to share your research with your colleagues and peers. The BJH is the official platform of the Belgian Hematology Society (BHS) and the Belgian Society on Thrombosis and Haemostasis (BSTH) and as such offers optimal visibility in the Belgian haematological community.

All article submissions or requests for additional information are most welcome at editor@bjh.be