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Introduction
Since the landmark paper published by Schena et al, 
describing a novel technique that allows the investiga-
tion of the expression of multiple genes in one experi-
ment, a true avalanche of studies reporting on the 
microarray technology arose.1 It took only 1 year before 
the first paper applying microarrays to cancer (i.e. 
melanoma) was published.2 To date, approximately 
13,000 studies have used a derivate of the microarray 
technology to study the biology of cancer from differ-
ent perspectives (biology, diagnosis, prognosis, treat-
ment prediction). Figure 1 demonstrates the explosive 
increase in studies associating microarrays and cancer 
since the inception of the technology back in 1995. 

In 2003, microarrays were introduced in clinical trials. 
DePrimo et al applied the technology to for the identifi-
cation of predictive biomarkers for response in patients 
with metastatic colorectal cancer treated with SU5416 
in a Phase III trial (Figure 1).3 More recently, 2 clinical 
randomised trials have been initiated to investigate the 
possibility of using gene expression assays for the selec-
tion of patients with breast cancer able to benefit from 
chemotherapy. The MINDACT trial aims at prospec-
tively validating the use of the 70-gene poor prognosis 
signature as a tool for the improvement of  the selection 
of patients with good prognosis who would not ben-
efit from adjuvant chemotherapy.4-6 The TAILORx-trial 
aims at the validation of the OncotypeDX recurrence 
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score as a tool for discriminating between patients who 
would benefit and patients who would not benefit from 
the addition of chemotherapy to hormonal treatment.7

The principle of the microarray technology is based 
on the unique feature of RNA- and DNA-molecules 
to bind to RNA- or DNA molecules with a comple-
mentary sequence (i.e A with T/U and G with C). 
This process is called hybridisation. When perform-
ing a microarray experiment, RNA is extracted from 
a sample of interest (e.g. a breast biopsy). This RNA 
sample, often referred to as the target, is subsequent-
ly converted to copy DNA (cDNA), which is further 
processed and ultimately coupled to a fluorescent 
dye. Once the cDNA is fluorescently labeled, it is 
hybridised to the microarray. The latter is a matrix 
of spots and each spot contains cDNA molecules, 
often called probes, each with a unique sequence 
designed to specifically bind to the cDNA molecules 
from only 1 corresponding gene. During hybridisa-
tion, the cDNA molecules in the spots will capture 
their fluorescently labeled complements from the 
target, and, as such, the spot will acquire a fluores-
cent signal. The intensity of this fluorescent signal 
is proportional to the amount of complementary 
cDNA molecules in the target, and hence is a mea-
sure of the expression of the corresponding gene. 
The microarray is scanned with an automated con-
focal laser scanner allowing the researcher to deter-
mine the fluorescent intensity of all spots on the 
microarray. After scanning, the resulting images are 
processed during the image analysis procedure to 
extract raw signal intensity values. These raw signal 
intensity values need to be normalised to reduce 
technical variation and increase array comparability. 
The guiding principle behind data normalisation is 
that the majority of the genes are not differentially 
expressed and, hence, that global differences in fluo-
rescence intensities between different arrays are not 
expected. After normalisation of the fluorescence 
intensities, quality assessment is performed by filter-
ing out spots with low signal-to-noise ratios, to pre-
vent biased results.
The procedures to perform a microarray experiment 
require trained personnel and specialised labora-
tory equipment. Nevertheless, although the process 
of data analysis is logistically more feasible (it only 
requires powerful computers with specific software), 
it is without doubt one of the most tantalising tasks 
due to the need to process vast amounts of data. To 

unravel the biological data provided by a microarray 
experiment requires both skills and cautiousness, 
as frequently there is no a priori way to detect flaws 
in the analysis procedures. The focus of the current 
review is to give the reader a glimpse of the pitfalls 
associated with microarray data analysis. 

Data analysis strategies
In general, 2 major analysis strategies exist; the 
unsupervised and the supervised method. An 
overview is presented in Table 1. The unsupervised 
methods refer to a group of techniques analysing the 
data without taking phenotypic features associated 
with the samples into account. In an unsupervised 
analysis, one is generally interested in the biological 
relationship between samples. As such, this strat-
egy is suited to discover new biological subgroups 
within a set of (tumour) samples and therefore unsu-

Figure 1. A PubMed-search for “Microarrays and Cancer” 

(blue), “Gene Signatures and Cancer” (red) and “Microarray 

and Clinical Trial” (yellow) was performed for each two-year pe-

riod from 1995 until 2010 (X-axis). Since the inception of the 

microarray technology in 1995, the number of publications ap-

plying the technology to cancer (Y-axis) increased exponen-

tially. Since 2005, a plateau-phase has been reached. The 

number of studies reporting on gene signatures in cancer is still 

exponentially increasing at the time of writing. The number of 

clinical trials involving a microarray study in some way, is lagging 

behind and is currently less than 5% of the total amount of 

studies reporting on cancer and involving microarrays. 
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pervised analysis strategies are often referred to as 
class discovery methods. For example, in a study by 
Perou et al, the authors performed an unsupervised 
analysis on a set of breast tumour samples.8 This 
resulted in 2 major subgroups associated with the 
presence or absence of Estrogen Receptor (ER) pro-
tein expression. In addition, new subgroups could 
be identified in both sets. The authors concluded 
that breast cancer is composed of different subtypes, 
some of which are biologically more related (e.g the 
ER+ subtype Luminal A and B) than others.8 This 
example demonstrated that class discovery analysis 
assists in identifying novel tumour subclasses and 
thus paves the way for more personalised treatment.
The supervised methods differ from the unsupervised 
methods in that the associated phenotypic data of the 
tumour samples are integrated in the analysis. The 
supervised methods can be subdivided in class com-
parison- and class prediction-methods. As the name 
suggests, class comparison-methods essentially com-
pare 2 or more classes or groups of tumour samples, 
mainly to identify differentially expressed genes. This 
method is well-suited to identify individual biomark-
ers, but can also be used as a starting point for down-
stream functional analysis (vide infra) For example, 
our research group used microarray analysis to molec-
ularly characterise inflammatory breast cancer (IBC). 
Therefore, we compared a group of IBC samples to a 
group of nIBC samples.9 In order to be able to com-
pare both groups, one needs a priori knowledge of the 
sample or grouping labels and consequently this is a 
supervised analysis strategy.  
The second supervised analysis strategy, class pre-
diction, refers to a set of techniques that is used to 
design gene signatures. A gene signature is a bio-

marker consisting of a collection of genes selected 
for their ability to discriminate with high specificity 
and sensitivity between 2 or more groups of tumour 
samples. In essence, each gene comprising a gene 
signature is a biomarker on its own. For the gene 
selection procedure, again, this technique requires 
prior knowledge of the sample or group labels. 
Gene signatures are among the holy grails in can-
cer research due to their clinical potential, as they 
can be used both as prognostic and therapeutic (i.e. 
predictive) markers. For example, Van ‘t Veer et al 
described a gene signature composed of 70 genes 
able to discriminate between patients with lymph 
node negative breast cancer who developed distant 
metastases within 5 years and those who remained 
metastases-free for more than 5 years.10 An exam-
ple of a predictive study is described by Hess et al, 
who designed a 30 gene signature capable of pre-
dicting pathological complete response to neoadju-
vant Paclitaxel and Fluorouracil + Doxorubicin + 
Cyclophosphamide in patients with breast cancer.11 
At the time this review was written, about 2,300 
papers associating gene signatures with cancer have 
been published (Figure 1). 
From the perspective of tailored treatment, the devel-
opment of gene signatures allowing for the identifi-
cation of samples with certain activated pathways is 
particularly interesting. For example, Creighton et al 
designed a gene signature predicting the activation 
of the IGF1-induced signal transduction pathway in 
breast cancer. They demonstrated that this gene sig-
nature is able to predict sensitivity to anti-IGF1R ther-
apy in cell lines and xenografts. Particularly cell lines 
and xenografts of triple negative breast tumours were 
predicted to be highly sensitive to anti-IGF1 therapy 

Table 1. Overview of microarray data analysis strategies, the associated algorithms and their 
appropriate references for further reading
STRATEGY SUBSTRATEGY ALGORITHMS REFERENCES

Unsupervised analysis Class discovery
Hierarchical cluster analysis, K-means clustering, Self-

organising maps, principal component analysis
12, 13, 14, 15, 16, 17

Supervised analysis

Class comparison

T-, ANOVA-, Mann-Whitney U- and Wilcoxon Signed 

Rank-testing, Linear models, Significance analysis of 

microarrays, Permutation testing

12, 18,19, 20, 21

Class prediction

Nearest centroid classification, Neural networks, Linear 

discriminant analysis, K-nearest neighbours, Support 

vector machines 

15, 22, 23, 24, 25

Functional analysis
Gene Set Enrichment Analysis, Global testing, Global AN-

COVA models, Pseudo-comparative genomic hybridisation
26, 27, 28, 29, 30
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(BMS-754807). Indeed, treatment of xenografts or 
triple negative breast tumours with BMS-754807 in 
combination with Docetaxel demonstrated significant 
tumour regression until no tumour was palpable.32 
In addition, the same authors demonstrated that a 
subgroup of ER+ breast tumours, particularly the 
endocrine resistant Luminal B tumours, exhibit the 
expression of the IGF1-activated gene signature.33 
Combined, these data suggest that patients with 
triple negative or endocrine resistant breast cancer 
could benefit from anti-IGF1R therapy. More impor-
tantly, these data also demonstrate how prediction of 
pathway activation through gene expression profiling 
can become a valuable tool in establishing tailored 
treatment.
A third analysis strategy that needs mentioning is 
the functional analysis. This too can be regarded 
as a supervised analysis strategy, because its start-
ing point is either the class prediction or the class 
comparison analysis. The functional analysis trans-
lates lists of genes into biological processes or sig-
nal transduction pathways. The rationale behind the 
functional analysis is, that most genes can play vital 
roles in different processes or signal transduction 
pathways. Therefore, it is difficult to unravel the biol-
ogy based upon lists of individual genes alone. On 
the other hand, a biological process or signal trans-
duction pathway is usually composed of a unique 
collection of genes. If these process- or pathway-spe-
cific genes can be identified in a list of differentially 
expressed genes, the associated biological process or 
signal transduction pathway will be of importance 
to the biology of the samples that have been used 
to define the list of differentially expressed genes. 
In addition, the functional analysis has the advan-
tage of downscaling the amount of possibly involved 
parameters to a more feasible number. The gene 
lists associated with biological processes and sig-
nal transduction pathways can be found in publicly 
available databases like Gene Ontology (GO), Kyoto 
Encyclopedia of Genes and Genomes (KEGG) and 
Transcription Factor databases (TransFac).27

In the remaining parts of this review, the aspects of the 
above outlined analysis strategies (class discovery, class 
comparison and class prediction) will be discussed 
in more detail with special focus on potential pitfalls. 
For more elaborate background on the items and algo-
rithms discussed in the following sections, the reader is 
directed towards the references in Table 1. 

Class discovery analysis
Class discovery analysis is an unsupervised analy-
sis directed at analysing the biological relationships 
between the samples. The biological relationships 
between samples are defined by how similar the 
gene expression profiles of the samples are.  This 
implies that the algorithms need a measure of simi-
larity. The most widely used similarity metrics are 
the Euclidean distance, the correlation coefficient 
and the Manhattan distance, but many more exist. 
Class discovery algorithms organise data in such 
way that samples with similar expression profiles 
are grouped together and that the gene expression 
profiles of the samples in different groups are maxi-
mally dissimilar. Groups of samples resulting from 
class discovery algorithms are called clusters and the 
algorithms themselves are often referred to as cluster 
algorithms. Examples of these algorithms are hierar-
chical cluster analysis, k-means cluster analysis and 
self-organising maps.12-17 
Another powerful class discovery algorithm that is 
widely gaining more and more interest is principal 
component analysis (PCA). Although this algorithm 
is regarded as an unsupervised analysis method, it 
should be mentioned separately from the cluster 
algorithms because no real distance metric is defined 
from the start. The rationale of PCA is to visualise 
multidimensional data in 2 or 3 dimensions through 
data decomposition. An average microarray experi-
ment consists of 100 samples and 20,000 genes. 
This means that the 100 samples can be visualised 
in a 20,000-dimensional hyperspace. PCA can be 
used to visualise these multidimensional datasets by 
reducing the number of dimensions down to 2 or 
3 theoretical dimensions, the principal components. 
These capture most of the gene expression variation 
present in the dataset and, as such, preserve the gene 
expression relationships between the samples.12 
Although class discovery techniques are extremely 
powerful, great care must be taken in applying these 
algorithms. Even though the methods used are 
objective in the sense that the algorithms are well-
defined and reproducible, they are still subjective in 
that selecting different algorithms or different dis-
tance metrics will place different objects into differ-
ent clusters. Furthermore, clustering unrelated data 
would still produce clusters, although they might 
not be biologically meaningful. The challenge is 
therefore, to select the data and to apply the algo-
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rithms appropriately so that the classification is sen-
sible.12 To obtain a useful analysis while at the same 
time preserving the expression relationships in the 
array dataset, it is standard practice to use those 
genes with a high coefficient of variation and mean 
expression level. In addition, each clustering result 
should be analysed for cluster stability or robustness 
to prevent reporting results that are not supported 
by the data. 

Class comparison analysis
In a class comparison analysis, one is interested in 
finding lists of genes that are differentially expressed 
between the conditions during the study. These gene 
lists can be used to unravel the molecular biology of 
previously uncharacterised conditions or they can be 
used to define potential biomarkers to follow-up on 
treatment or disease progression. Different methods 
exist to define lists of differentially expressed genes, 
all derived from the field of traditional statistics, for 
example T-testing, ANOVA-testing, Mann-Whitney 
U-testing and Wilcoxon Signed Rank-testing. Also 
linear models (i.e. linear regression analysis) can be 
used for this purpose. For example, when studying 
differential gene expression between ER+ and ER- 
tumours, the power of each gene in the microarray 
experiment to correctly predict ER+ from ER- breast 
tumours is evaluated using linear regression analy-
sis. In this, the predictive power is proportional to 
the level of differential expression.
The greatest statistical challenge is based on the 
conclusions concerning the expression of a great 
number of genes on the basis of a small number 
of samples. This problem is also referred to as the 
multiple testing or multiple comparisons problem. 
The major culprit for this phenomenon is the sig-
nificance level or alpha-level that is the preset prob-
ability that a statistical test will be a false positive. 
Another way to consider the significance level is 
that it is the percentage of statistical tests that will 
be false positive. In microarray analysis, which usu-
ally deals with on average 20,000 genes, this means 
that 1,000 false positives are expected for a signifi-
cance level of 0.05. For this kind of experiment, the 
False Discovery Rate (FDR), which is the percentage 
of false positives in the total amount of significant 
results, can easily be about 50%. The problem is that 
one cannot determine which statistical results are 

true/false positives.12,18-21. A number of algorithms 
have been developed to tackle this problem. The 
Bonferroni correction is very stringent and aims at 
reducing the probability of having only one false 
positive in the full set of comparisons. This method 
is widely used when dealing with the identification 
of individual biomarkers. The FDR-correction pro-
posed by Benjamini and Hochberg aims at reduc-
ing the expected proportion of false positives.20 This 
method is less stringent and is more appropriate 
when aiming at the molecular characterization of a 
condition or the identification of gene signatures. 
FDR-levels of up to 10% are considered appropriate 
in microarray literature.12, 18-21 Of note, biologically 
interesting genes with more elevated FDR-levels (i.e. 
greater than 10%) can still be relevant. For example, 
genes with an FDR of 20% still have 80% chance of 
being true positives. It is standard practice to evalu-
ate such genes with alternative expression profiling 
techniques (e.g. qRT-PCR), preferentially on a differ-
ent and larger set of samples.

Class comparison analysis
Perhaps the most promising application of micro-
arrays for expression profiling, is class prediction. 
In this setting it is not necessary to understand 
the underlying molecular biology of the condition. 
Rather, it is a purely statistical exercise in linking a 
certain pattern of expression to a certain diagnosis 
or prognosis.15,22-25 The procedure of classification 
is a well-established field in statistics, from which a 
wealth of methods can be drawn. Each modelling 
method consists of 3 stages: feature selection, model 
building and model assessment.15,22-25 
Feature selection involves the process of select-
ing genes that will be used to construct the clas-
sifier. Feature selection should favour informative 
genes without being too restrictive in their selection 
criteria. Usually, simple fold change statistics, T-test 
or ANOVA-statistics (for multiple groups) are used. 
Also, genes can be selected based on their standard 
deviation. Genes that ideally compose a gene signa-
ture are those genes demonstrating a huge difference 
in mean or median gene expression between groups of 
tumour samples (e.g. high fold-change or high T-test 
or ANOVA-statistics) but show little variation within 
each group of tumour samples under study (e.g. low 
within-group standard deviation). After the feature 
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selection process, the model should be built. Many 
model-building procedures exist, including nearest 
centroid classification, neural networks, linear discrim-
inant analysis, K-nearest neighbours and support vec-
tor machines. A popular choice amongst these is the 
nearest centroid classification, which compares each 
sample under study to a set of centroids, one for each 
class. A centroid is the average expression profile of a 
certain class and is based on the genes selected during 
the feature selection process. The final step in model 
building is to define a prediction rule, for example a 
threshold on the Euclidean distance between the sam-
ples and the centroids. When this Euclidean distance 
exceeds a given value, the sample is not classified in 
the group represented by the centroid and vice versa. 
Once the prediction model is constructed, the next 
step is model assessment and validation, essentially 
performed on a series of samples not used for feature 
selection or model-building. In the model assessment 
stage, metrics such as sensitivity (% of correctly classi-
fied positive samples), specificity (% of correctly classi-
fied negative samples), accuracy (% correct classifica-
tions) and prediction error (% misclassifications) can 
be examined to determine how well the prediction 
model is able to correctly classify a series of unknown 
samples. For example, we designed a gene signature 
able to predict IBC samples from nIBC samples. 
Testing this gene signature onto an independent series 
of IBC/nIBC samples proved that the gene signature 
correctly classified all IBC samples (sensitivity=100%) 
and only 1 nIBC sample was misclassified (specific-

ity=91%). The total percentage of misclassifications 
was 5.8% (=prediction error) and the accuracy was 
94.2%.31 The rationale behind model assessment is, 
that a classifier can perform well on the samples used 
for feature selection/model-building, but may perform 
poor on other samples subject to the same classifica-
tion procedure. This phenomenon is called overfitting. 
The best way to perform model assessment is to use 
an independent dataset, composed of samples not 
used in the feature selection/model-building phase. 
This can be done by splitting a group of samples in a 
training set, used for feature selection/model-building 
and a test set used for model assessment. If the initial 
set of samples is too small for splitting, other model 
assessment procedures exist such as cross-validation 
or bootstrap analysis.15,22-25  

Conclusion
Since the introduction of the microarray technology 
in 1996, the technique has acquired a permanent sta-
tus in cancer research due to its versatile applicability. 
The technique can be used to discover new tumour 
subtypes, to identify single-gene or multiple-gene bio-
markers for response to treatment or disease progres-
sion and to unravel the molecular biology of previously 
uncharacterised or poorly characterised conditions. 
Nevertheless, despite the wide range of possibilities, 
great care must be taken when analysing data, as many 
pitfalls exist that can easily trap a researcher into report-
ing results unsupported by the data. In addition, as 

Key messages for clinical practice

1.  Class discovery analysis can be used to identify novel tumour subgroups and, as 
such, can assist in paving the way for tailored therapy. 

2. Class comparison analysis can be used to study the biology of poorly characterised 
tumour specimens and to identify potential molecular targets for targeted therapy.

3. Class prediction analysis can be used to identify multi-gene biomarkers to assist 
in therapeutic decision-making and patient prognosis.

4. Gene expression profiling can provide guidance in the establishment of tailored 
therapy through prediction of signal transduction pathway activation in clinical 
tumour samples.
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microarray technology is gradually finding its way into 
clinical trials, knowledge of the possible analysis strate-
gies and existing methods, with their advantages and 
disadvantages, is important to the clinician in order to 
be able to interpret the results correctly. 
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